Special Relativity

In 1905, Albert Einstein wrote a paper describing the effects of high speeds on time, distance, mass, momentum and energy.

He postulated that the only absolute in the universe is the speed of light in a vacuum, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, regardless of the speed of the observer.

Time Dilation

Imagine an astronaut on a spacecraft, shining a flashlight at a mirrored ceiling:
The distance travelled by the light for $1 / 2$ the round trip as measured by the astronaut is $\mathrm{d}_{\mathrm{a}}=\mathrm{ct}_{2}$. That measured by the observer on Earth is $\mathrm{d}_{\mathrm{E}}=\mathrm{ct}_{1}$. The distance travelled by the ship during this time is $\mathrm{d}_{\mathrm{s}}=\mathrm{vt}_{1}$.
" v " = the speed of the ship

Using pythagorean theorem,

$$
\begin{aligned}
& \left(c \Delta t_{1}\right)^{2}=\left(v \Delta t_{1}\right)^{2}+\left(c \Delta t_{2}\right)^{2} \\
& \left(c \Delta t_{1}\right)^{2}-\left(v \Delta t_{1}\right)^{2}=\left(c \Delta t_{2}\right)^{2} \\
& c^{2}\left(\Delta t_{1}\right)^{2}-v^{2}\left(\Delta t_{1}\right)^{2}=c^{2}\left(\Delta t_{2}\right)^{2}
\end{aligned}
$$

now divide by c^{2} :

$$
\begin{aligned}
& \left(\Delta t_{1}\right)^{2}-\frac{v^{2}}{c^{2}}\left(\Delta t_{1}\right)^{2}=\left(\Delta t_{2}\right)^{2} \\
& \left(\Delta t_{1}\right)^{2}\left(1-\frac{v^{2}}{c^{2}}\right)=\left(\Delta t_{2}\right)^{2} \\
& \left(\Delta t_{1}\right)^{2}=\frac{\left(\Delta t_{2}\right)^{2}}{\left(1-\frac{v^{2}}{c^{2}}\right)}
\end{aligned}
$$

$\Delta t_{1}=\frac{\Delta t_{2}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}$
where
$\Delta \mathrm{t}_{1}=$ the time that passes for the stationary (Earth) observer
$\Delta \mathrm{t}_{2}=$ the time that passes for the moving observer
Thus, time passes more slowly for faster moving objects!

Length (and Distance) Contraction

We see a similar effect for distances:

$$
L_{1}=\frac{L_{2}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}
$$

Where $\mathrm{L}_{1}=$ the rest length of the object (this is the same as the length of the object as measured by the observer moving with the object)
$\mathrm{L}_{2}=$ the length of the object as measured by the stationary

observer

** NOTE - This can also be used for distance travelled, where
$\mathrm{L}_{1}=$ the distance travelled by the moving object as measured by the stationary observer
$\mathrm{L}_{2}=$ the distance travelled by the moving object as measured by the moving object

Mass and Momentum Increase

We also see a similar effect for mass and momentum:

$$
m_{1}=\frac{m_{2}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}
$$

Where $\mathrm{m}_{1}=$ the "relativistic" mass of the object (the mass of the object while moving, as measured by the stationary observer
$\mathrm{m}_{2}=$ the "rest" mass of the object (the mass of the object while at rest)

SO,

$$
p=\frac{m v}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}
$$

Where " p " is the relativistic momentum of the object
Examples:

1. Jim and Tim are twins. Jim becomes a starship captain and goes on a five-year mission (as measured by him), travelling at 96% of the speed of light. At the end of the mission, what is the age difference between the twins and who is older?

$$
\Delta t_{1}=\frac{\Delta t_{2}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}} \Delta \mathrm{t}_{1}=\text { time that passes for Tim }
$$

$\Delta \mathrm{t}_{2}=$ time that passes for Jim

$$
\begin{aligned}
\Delta t_{1} & =\frac{5}{\sqrt{\left(1-\frac{(0.96 \mathrm{c})^{2}}{c^{2}}\right)}} \\
\Delta t_{1} & =17.8 \text { years }
\end{aligned}
$$

Therefore, Tim is (17.8-5 = 12.8) years older than Jim.
2. If the rest mass of Jim's ship is $2.4 \times 10^{5} \mathrm{~kg}$, what are its relativistic mass and momentum during the mission?

$$
\begin{aligned}
& m_{1}=\frac{2.4 \times 10^{5}}{\sqrt{\left(1-(0.96)^{2}\right)}} \\
& m_{1}=8.6 \times 10^{5} \mathrm{~kg}
\end{aligned}
$$

$$
p=\frac{m v}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}
$$

$$
p=\left(8.6 \times 10^{5}\right)(0.96)\left(3 \times 10^{8}\right)
$$

$$
p=2.47 \times 10^{14} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

